Cadastre-se

Solucionando Quadrados Mágicos

Os quadrados mágicos constituem uma excelente ferramenta de aprendizagem e desenvolvimento do raciocínio lógico, contribuindo na formação do senso de organização numérica em relação à utilização de operações matemáticas na busca por resultados pré-determinados. O interessante na realização desse modelo de jogo matemático consiste na disposição correta dos números de acordo com o quadrado fornecido.

Por exemplo, ao utilizarmos um quadrado de ordem 3x3, temos ao todo 9 células a serem preenchidas com os algarismos de 1 a 9, sem repetição. A soma dos números em todas as horizontais, verticais e diagonais devem ser iguais a 15. No quadrado 4x4, temos 16 células que deverão ser preenchidas com os números de 1 a 16, também sem repetição. No quadrado 4x4 a soma dos números na horizontal, vertical e diagonal deve totalizar 34.

Na busca do posicionamento adequado, respeitando a soma exigida, os alunos devem descobrir, com a interferência ou não do professor, uma importante relação entre os números, denominada paridade. Essa relação entre os número é responsável pela seguinte situação:

A soma entre números pares possui como resultado um número par.

A soma entre algarismos ímpares resulta em um número par.

A soma entre um número par e um número ímpar resulta em um número ímpar.

Com base na paridade dos números, a resolução de um quadrado mágico se torna menos complexa, e os números poderão ser reorganizados de acordo as definições fornecidas. Na resolução do quadrado 3x3, sempre somaremos três números buscando como resultado o número 15, classificado como ímpar. Portanto, a adição de termos se realizará mediante presença de pelo menos um número ímpar.

Os números pares e ímpares envolvendo o quadrado 3x3 são:

Pares: 2, 4, 6, 8.

Ímpares: 1, 3, 5, 7, 9.

 

Observe que em apenas uma sequência os números são todos ímpares e no restante temos dois números pares e um ímpar. Analise a situação envolvendo como ponto de explicação a relação de paridade dos números. Veja as somas:


Par + Ímpar + Par = Ímpar

2 + 9 + 4 = 15
6 + 1 + 8 = 15
2 + 7 + 6 = 15
4 + 3 + 8 = 15


Ímpar + Ímpar + Ímpar = Ímpar

9 + 5 + 1 = 15


Na resolução do quadrado mágico de ordem 4x4, um possível posicionamento entre os números será:

 

Observe que a soma envolveu dois números pares e dois números ímpares.

Par + Par = Par e Ímpar + Ímpar = Par, então:

Ímpar + Ímpar + Par + Par → Par + Par → Par


Esse material didático é recomendado para alunos do 3º, 4º e 5º ano do Ensino Fundamental I e 6º e 7º ano do Ensino Fundamental II.


Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Matemática - Estratégias de Ensino - Educador - Brasil Escola

  • terça-feira | 17/06/2014 | Regiane Aparec...

    sou aluna de matematica e gostaria de ter materiais relacionado a essa area.

  • quarta-feira | 07/05/2014 | lucas

    Ja desconfiava q era assim

  • sábado | 29/03/2014 | Adelson Jesus

    D+++++++++++++

  • quarta-feira | 26/03/2014 | leleka

    obrigado isso tava me matando foi dificil achar o resultado

Brasil Escola nas Redes Sociais